
New Lattice Microbes v2.3 Installation Guide
- Additional Instructions for Dependencies

Benjamin R. Gilbert

April 5, 2020

This guide in combination with the README in the HeLa model repository
should be used to build the Lattice Microbes HeLa model detailed in

Zhaleh Ghaemi, Joseph R. Peterson, Martin Gruebele, and Zaida Luthey-Schulten.
An in-silico human cell model reveals the influence of spatial organization on
rna splicing. PLOS Computational Biology, 16(3):1–23, 03 2020

1 Software Requirements

All of the dependencies that must be installed from source and the related
bash functions are found in the LM 2.3 dependency sources.tar. Extracting this
archive should result in a directory named Software and a text file named
bashrc functions LM 2.3.txt.

cd /home/"user"/Downloads

tar -xvf LM 2.3 dependency sources.tar

The directory contains the source code for the dependencies that must be
installed from source; the subdirectories within it follow the layout specified in
the directions for the build and source directory locations and the whole direc-
tory may be copied to the user’s home directory.

cp -r /home/"user"/Downloads/Software /home/"user"/Software

Completing this step allows the user to avoid downloading the sources indi-
vidually and to skip the steps titled ”Create the directory for the builds and the
source code” and ”Place the tar file in the build and source directory,” which
are found within each dependency’s instructions for installing from source.

The text file contains bash functions used to create a shell environment suit-
able for building and running Lattice Microbes v2.3.

1

https://github.com/EukaryoticCellBuilder/HeLa_Builder

1.1 List of All Dependencies

• Lattice Microbes v2.3 — Download compressed tar file

• GCC v8.4.0 — Install from source

• CUDA v10.1 — Download and execute runfile

• HDF5 v1.12.0 — Install from source

• Protocol Buffers v3.11.4 — Install from source

• PCRE v8.44 — Install from source, needed for SWIG

• Boost v1.72.0 — Install from source, needed for SWIG

• SWIG v4.0.1 — Install from source using PCRE and Boost libraries

• Python 2.7 — Create new conda environment

• NumPy and SciPy — Install in conda environment

• iGraph — Install in conda environment

• pygexf — Install in conda environment

• lxml — Install in conda environment

• matplotlib — Install in conda environment

• SBML v5.18.0 — Download tar file with libraries

1.2 Conda Environment - Includes Python and Python Pack-
ages

This guide assumes the Anaconda Python distribution has already been installed on
the machine, if this is not the case, install Anaconda before proceeding.

The new conda environment will be named LM 2.3 base and will be created
with Python2.7. Packages within the virtual environment will be handled by
the conda package manager, it should automatically satisfy the various depen-
dencies.

1. Create new conda environment.
conda create --name LM 2.3 base python=2.7

If you want to use Jupyter notebooks with the LM install, instead use the com-
mand.
conda create --name LM 2.3 base anaconda python=2.7

2. Add the packages to the virtual environment and allow it to solve the
dependencies.
conda install -c auto pygexf

conda install numpy scipy h5py lxml matplotlib

2

1.3 GCC v8.4.0

Install location:/usr/local/Compilers/GCC/8.4.0

1. Create the install directory.
cd /usr/local

sudo mkdir -p ./Compilers/GCC/8.4.0

2. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Compilers/GCC/8.4.0

3. Place the tar file in the build and source directory.
cd /home/"user"/Software/Compilers/GCC/8.4.0

mv gcc-8.4.0.tar.gz .

4. Extract the source code
tar -xzvf gcc-8.4.0.tar.gz

5. Test if pre-requisites are present.
cd gcc-8.4.0

./contrib/download prerequisites

6. Create the build directory.
cd ..

mkdir gcc-build

cd gcc-build

7. Configure GCC
../gcc-8.4.0/configure -v\

--build=x86 64-linux-gnu --host=x86 64-linux-gnu --target=x86 64-linux-gnu\
--prefix=/usr/local/Compilers/GCC/8.4.0\
--enable-checking=release --enable-languages=c,c++,fortran --disable-multilib\
--program-suffix=-8.4.0

8. Build GCC. (8 is the number of cores to be used, change accordingly.)
make -j 8 This will take a while and it is suggested that the user jump
ahead to 2 and 3.

9. Install GCC.
sudo make install

Versions 8.4.0 of all of the compilers in the Gnu Compiler Collection and the
related libraries are now installed at /usr/local/Compilers/GCC/8.4.0. Explic-
itly using these, rather than those installed via some form of package manager,
will be accomplish through use of functions added to the user’s .bashrc. Skip
ahead to 3 and complete that step before using the new compiler to build the
remaining dependencies. Remember to source your .bashrc before attempting
to use the new functions.

3

After completing this step the new compiler can be tested by loading it and
then checking the version number.

GNU NEW LOAD 8.4.0

gcc --version

1.4 CUDA v10.1

Install CUDA v10.1 using the runfile and instructions provided at the Nvidia
website.

Install location:/usr/local/cuda-10.1

After installing CUDA v10.1 edit the local.mk to match the compute capabili-
ties of the installed Nvidia GPU.

1.5 HDF5 v1.12.0

Build and install HDF5 v1.12.0 using the install of gcc-8.4.0.

Install location:/usr/local/Libraries/hdf5/1.12.0 gcc8.4.0

1. Confirm that gcc-8.4.0 is loaded
GNU NEW LOAD 8.4.0

gcc --version

The output should show that v8.4.0 is being used.

2. Create the install directory.
cd /usr/local

sudo mkdir -p ./Libraries/hdf5/1.12.0 gcc8.4.0

3. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Libraries/hdf5/1.12.0

4. Place the tar file in the build and source directory.
cd /home/"user"/Software/Libraries/hdf5/1.12.0

mv hdf5-1.12.0.tar.gz .

5. Extract the source code
tar -xzvf hdf5-1.12.0.tar.gz

6. Create the build directory.
cd ..

mkdir build gcc8.4.0

cd build gcc8.4.0

4

7. Configure the hdf5 build.
../hdf5-1.12.0/configure --prefix=/usr/local/Libraries/hdf5/1.12.0 gcc8.4.0\

--enable-cxx

8. Build hdf5. (8 is the number of cores to be used, change accordingly.)
make -j 8

9. Install hdf5.
sudo make install

The HDF5 library caused some additional difficulties when running LM and the solu-
tion was to create a symbolic link.

ln -s /usr/local/Libraries/hdf5/1.12.0 gcc8.4.0/lib/libhdf5.so.200.0.0\
/lib/x86 64-linux-gnu/libhdf5.so.200

1.6 Protocol Buffers v3.11.4

Build and install Protocol Buffers v3.11.4 using the install of gcc-8.4.0.

Install location:/usr/local/Libraries/protobuf/3.11.4 gcc8.4.0

1. Confirm that gcc-8.4.0 is loaded
GNU NEW LOAD 8.4.0

gcc --version

The output should show that v8.4.0 is being used.

2. Create the install directory.
cd /usr/local

sudo mkdir -p ./Libraries/protobuf/3.11.4 gcc8.4.0

3. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Libraries/protobuf/3.11.4

4. Place the tar file in the build and source directory.
cd /home/"user"/Software/Libraries/protobuf/3.11.4

mv protobuf-all-3.11.4.tar.gz .

5. Extract the source code
tar -xzvf protobuf-all-3.11.4.tar.gz

6. Create the build directory.
mkdir build gcc8.4.0

cd build gcc8.4.0

7. Configure the protobuf build.
../protobuf-3.11.4/configure --prefix=/usr/local/Libraries/protobuf/3.11.4 gcc8.4.0\

"CFLAGS=-fPIC" "CXXFLAGS=-fPIC"

5

8. Build protobuf. (8 is the number of cores to be used, change accordingly.)
make -j 8

9. Install protobuf.
sudo make install

1.7 PCRE v8.44

Build and install PCRE v8.44 using the install of gcc-8.4.0.

Install location:/usr/local/Libraries/PCRE/8.44 gcc8.4.0

1. Confirm that gcc-8.4.0 is loaded
GNU NEW LOAD 8.4.0

gcc --version

The output should show that v8.4.0 is being used.

2. Create the install directory.
cd /usr/local

sudo mkdir -p ./Libraries/PCRE/8.44 gcc8.4.0

3. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Libraries/PCRE/8.44

4. Place the tar file in the build and source directory.
cd /home/"user"/Software/Libraries/PCRE/8.44

mv pcre-8.44.tar.bz2 .

5. Decompress the source code
bzip2 -d pcre-8.44.tar.bz2

6. Extract the source code
tar -xvf source.tar

7. Create the build directory.
mkdir build gcc8.4.0

cd build gcc8.4.0

8. Configure the PCRE build.
../pcre-8.44/configure --prefix=/usr/local/Libraries/PCRE/8.44 gcc8.4.0\

--enable-unicode-properties\
--enable-pcre16 --enable-pcre32

9. Build PCRE. (8 is the number of cores to be used, change accordingly.)
make -j 8

10. Install PCRE.
sudo make install

6

The PCRE library caused some additional difficulties when building and the solution
was to create a symbolic link.

ln -s /usr/local/Libraries/PCRE/8.44 gcc8.4.0/lib/libpcre.so.1.2.12\
/lib/x86 64-linux-gnu/libpcre.so.1

1.8 boost v1.72.0

Build and install boost v1.72.0 using the install of gcc-8.4.0.

Install location:/usr/local/Libraries/boost/1.72.0 gcc8.4.0

1. Confirm that the conda environment with Python2.7 is active.
conda activate LM 2.3 base

2. Confirm that gcc-8.4.0 is loaded
GNU NEW LOAD 8.4.0

gcc --version

The output should show that v8.4.0 is being used.

3. Create the install directory.
cd /usr/local

sudo mkdir -p ./Libraries/boost/1.72.0 gcc8.4.0

4. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Libraries/boost/1.72.0

5. Place the tar file in the build and source directory.
cd /home/"user"/Software/Libraries/PCRE/8.44

mv boost 1 72 0.tar.gz .

6. Extract the source code and move to source directory.
tar -xzvf boost 1 72 0.tar.gz

cd boost 1 72 0

7. Configure the boost build.
./bootstrap.sh --prefix=/usr/local/Libraries/boost/1.72.0 gcc8.4.0

8. Stage the boost build. (8 is the number of cores to be used, change ac-
cordingly)
./b2 stage -j8 threading=multi link=shared

9. Install boost
sudo ./b2 install threading=multi link=shared

7

1.9 SWIG v4.0.1

Build and install SWIG v4.0.1 using the install of gcc-8.4.0 and linking to the
PCRE and boost libraries.

Install location:/usr/local/Tools/swig/4.0.1 gcc8.4.0

1. Confirm that the conda environment with Python2.7 is active.
conda activate LM 2.3 base

2. Confirm that gcc-8.4.0 is loaded
GNU NEW LOAD 8.4.0

gcc --version

The output should show that v8.4.0 is being used.

3. Create the install directory.
cd /usr/local

sudo mkdir -p ./Tools/swig/4.0.1 gcc8.4.0

4. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Swig

5. Place the tar file in the build and source directory.
cd /home/"user"/Software/Tools/swig/4.0.1

mv swig-4.0.1.tar.gz .

6. Extract the source code
tar -xzvf swig-4.0.1.tar.gz

7. Create the build directory.
mkdir build gcc8.4.0

cd build gcc8.4.0

8. Configure the swig build.
../swig-4.0.1/configure --prefix=/usr/local/Tools/swig/4.0.1 gcc8.4.0\

--with-pcre-prefix=/usr/local/Libraries/PCRE/8.44 gcc8.4.0\
--with-boost=/usr/local/Libraries/boost/1.72.0 gcc8.4.0\
"PCRE CONFIG=/usr/local/Libraries/PCRE/8.44 gcc8.4.0/bin/pcre-config"

9. Build swig(̇8 is the number of cores to be used, change accordingly.)
make -j 8

10. Test swig.
make -k check

11. Install swig.
sudo make install

8

1.10 SBML v5.18.0

Install SBML v5.18.0 using the pre-compiled Ubuntu binaries. Install loca-
tion:/usr/local/Libraries/SBML/5.18.0

1. Create the install directory.
cd /usr/local

sudo mkdir -p ./Libraries/SBML/5.18.0

2. Create the directory for the builds and the source code.
mkdir -p /home/"user"/Software/Libraries/SBML/5.18.0

3. Place the tar file in the build and source directory.
cd /home/"user"/Software/Libraries/SBML/5.18.0

mv libSBML-5.18.0-Linux-x64-binaries-ubuntu.tar.gz .

4. Extract the binary files.
tar -xzvf libSBML-5.18.0-Linux-x64-binaries-ubuntu.tar.gz

5. Navigate the directory of binaries.
cd libSBML-5.18.0-linux

6. To avoid possible accidents, it is strongly suggested that you carefully
change the name of the subdirectory usr without using any form of root
permissions.
mv ./usr temp dir

cd temp dir

7. Copy the files within temp dir to the install location.
sudo cp -r * /usr/local/Libraries/SBML/5.18.0/.

2 Configuring local.mk and editing Makefile/subdir.mk(s)

2.1 Configuring local.mk to use installed software.

Copy the local.mk.linux from to the main directory of the Lattice Microbes
source code, the location of this directory depends on the user.

cd LM source dir

cp ./docs/config/local.mk.linux local.mk

Begin editing the local.mk using the text editor of your choice to specify build
options and the locations and configurations of dependencies.

Proceeding from top to bottom of an unmodified local.mk (line numbers as-
sume the preceeding changes have been made):

9

1. On line 29 change the INSTALL PREFIX variable to the desired installation
directory. Make sure that this is the same as the bash variable LM DIR in
the bash function LM 2.3 LOAD.
INSTALL PREFIX := /home/"user"/Workspace/LM/LM 2.3

2. On line 40 change the HDF5 DIR variable to match the location of the in-
stalled hdf5 library.
HDF5 DIR := /usr/local/Libraries/hdf5/1.12.0 gcc8.4.0

3. On line 52 change the PROTOBUF DIR variable to match the location of the
installed protobuf library.
HDF5 DIR := /usr/local/Libraries/hdf5/1.12.0 gcc8.4.0

4. On line 67 change the CUDA DIR variable to match the location of the CUDA
installation.
CUDA DIR := /usr/local/cuda-10.1

5. On lines 70-73 comment all of them out and add a line below on line 74
to specify the CUDA architecture being used in the CUDA ARCH variable.
CUDA ARC := -gencode arch=compute XX,code=compute XX

6. On line 110 change the PYTHON SWIG variable to match the location of the
swig installation’s binary.
PYTHON SWIG := /usr/local/Tools/swig/4.0.1 gcc8.4.0/bin/swig

7. On lines 114 and 115 comment both of them out and add lines below
line 115 to specify variables used for building the Python wrapper. The
last line should be line 122. These variables should reference where the
user’s conda virtual environments are installed. Depending on the user’s
Anaconda installation, these may be different, what is shown below is an
example.
PYTHON INCLUDE DIR := $(shell python-config --includes)

PYTHON LIB := $(shell python-config --libs)

PYTHON INCLUDE DIR += -I/home/"user"/.conda/envs/LM 2.3 base/include/python2.7

PYTHON INCLUDE DIR += -I/home/"user"/.conda/envs/LM 2.3 base/lib/\
python2.7/site-packages/numpy/core/include

PYTHON LIB += -L/home/"user"/.conda/envs/LM 2.3 base/lib

PYTHON CONFIG INFO cflags := $(python-config --cflags)

PYTHON CONFIG INFO ldflags := $(python-config --ldflags)

8. On line 136 change the SBML DIR variable to match the location of the in-
stalled SBML library.

10

SBML DIR := /usr/local/Libraries/SBML/5.18.0

9. Below line 161 add the following.
CCFLAGS += $(PYTHON CONFIG INFO cflags)

10. Below line 169 add the following.
LDFLAGS += $(PYTHON CONFIG INFO ldflags)

11. Comment line 186 and uncomment line 187.

12. On line 191 change the CUDA INCLUDE DIR variable to the following.
CUDA INCLUDE DIR := -I$(CUDA DIR)/targets/x86 64-linux/include

13. On line 192 change the CUDA LIB DIR variable to the following.
CUDA LIB DIR := -L$(CUDA DIR)/targets/x86 64-linux/lib

14. On line 193 change the CUDA LIB variable to the following.
CUDA LIB := -lcudart $(CUDA DIR)/targets/x86 64-linux/lib/libcudart static.a

2.2 Makefile edits

Comment out line 158 and place the following underneath it.
all: protobuf $(MAIN) util vmdplugin pylm pylmExamples pylmInstall

2.3 subdir.mk edits

3 Setting Up Environment

3.1 Additions to .bashrc

Make these additions to your .bashrc using the text editor of your choice.
Remember to source your .bashrc after completing the additions. All of the
changes to path variables will only be used when the functions are called in
the shell, so it is safe to source your .bashrc without worrying about unex-
pected consequences.

source /home/"user"/.bashrc

11

3.1.1 Compiler Loading

#GNU-Compilers

function GNU LOAD {
#Set aliases for use in cmake execution

alias gcc=$GCC INSTALL/’gcc-’$1

alias cc=$GCC INSTALL/’gcc-’$1

alias g++=$GCC INSTALL/’g++-’$1

alias c++=$GCC INSTALL/’c++-’$1

alias gfortran=$GCC INSTALL/’gfortran-’$1

#export environment variables for use in cmake execution

export FORTRAN COMPILER=$GCC INSTALL/’gfortran-’$1

export FC=$GCC INSTALL/’gfortran-’$1

export F77=$GCC INSTALL/’gfortran-’$1

export F90=$GCC INSTALL/’gfortran-’$1

export CMAKE Fortran COMPILER=$GCC INSTALL/’gfortran-’$1

export CMAKE C COMPILER=$GCC INSTALL/’gcc-’$1

export CC=$GCC INSTALL/’gcc-’$1

export CXX=$GCC INSTALL/’g++-’$1

}
export -f GNU LOAD

function GNU NEW LOAD {
#export environment variables for GNU compiler

export temp ver=$1

export GCC DIR=’/usr/local/Compilers/GCC/’$temp ver

export GCC INC=$GCC DIR/’include’

export GCC LIB=$GCC DIR/’lib64’

export LD LIBRARY PATH=$GCC LIB:$LD LIBRARY PATH

export GCC INSTALL=$GCC DIR/’bin’

GNU LOAD $temp ver

}
export -f GNU NEW LOAD

3.1.2 CUDA Loading

function CUDA NEW LOAD 10.1 {
export PATH=/usr/local/cuda-10.1/bin:/usr/local/cuda-10.1/\

nsightCompute-2019.4.0${PATH:+:${PATH}}
export LD LIBRARY PATH=/usr/local/cuda-10.1/\

lib64${LD LIBRARY PATH:+:${LD LIBRARY PATH}}
}
export -f CUDA NEW LOAD 10.1

12

3.1.3 Library Loading

#PCRE

function PCRE NEW LOAD {
PCRE DIR=’/usr/local/Libraries/PCRE/8.44 gcc8.4.0’

PCRE LIB=$PCRE DIR/’lib’

export LD LIBRARY PATH=$PCRE LIB:$LD LIBRARY PATH

}
export -f PCRE NEW LOAD

#hdf5

function hdf5 NEW LOAD {
hdf5 DIR=’/usr/local/Libraries/hdf5/1.12.0 gcc8.4.0’

hdf5 LIB=$hdf5 DIR/’lib’

export LD LIBRARY PATH=$hdf5 LIB:$LD LIBRARY PATH

}
export -f hdf5 NEW LOAD

#protobuf

function protobuf NEW LOAD {
protobuf DIR=’/usr/local/Libraries/protobuf/3.11.4 gcc8.4.0’

protobuf LIB=$protobuf DIR/’lib’

export LD LIBRARY PATH=$protobuf LIB:$LD LIBRARY PATH

}
export -f protobuf NEW LOAD

#SBML

function SBML NEW LOAD {
SBML DIR=’/usr/local/Libraries/SBML/5.18.0’

SBML LIB=$SBML DIR/’lib64’

export LD LIBRARY PATH=$SBML LIB:$LD LIBRARY PATH

}
export -f SBML NEW LOAD

3.1.4 Lattice Microbes Path Variables

function LM 2.3 LOAD {
PCRE NEW LOAD

hdf5 NEW LOAD

protobuf NEW LOAD

SBML NEW LOAD

LM DIR=’/home/"user"/Workspace/LM/LM 2.3’

13

export PATH=$PATH:$LM DIR/’bin’

export PYTHONPATH=$LM DIR/’lib/lm’:$PYTHONPATH

export PYTHONPATH=$LM DIR/’lib/python’:$PYTHONPATH

}
export -f LM 2.3 LOAD

4 Loading Environment Variables Prior to Build

Before building and executing Lattice Microbes v2.3 the environment variables
must be set using the conda environment and the bash functions added to the
user’s .bashrc.

1. Activate the conda environment.
conda activate LM 2.3 base

2. Load the CUDA compiler and libraries.
CUDA NEW LOAD 10.1

3. Load the gcc compiler.
GNU NEW LOAD 8.4.0

4. Load the libraries and add install location to the Python path.
LM 2.3 LOAD

5 Building and Installing Lattice Microbes

If the user wants to visualize the results of Lattice Microbes simulations, they
should build and install Lattice Microbes with VMD.

5.1 Without VMD

Install Lattice Microbes

1. Navigate to main directory of the Lattice Microbes source code.
cd LM source dir

2. Make Lattice Microbes using the settings in local.mk. As a note, difficul-
ties were encountered when using multiple threads for the build (build
option -j 8).
make LOCALMK=local.mk

3. Install the build at the INSTALL PREFIX specified in the local.mk.
make install

14

5.2 With VMD

Assuming VMD has been previously installed at /usr/local/VMD/"VMD version

number" with the VMD binary in /usr/local/VMD/"VMD version number"/bin and
the supporting libraries, binaries, and plugins in /usr/local/VMD/"VMD version

number"/vmd, the local.mk will be edited to match these installation locations.

Configure local.mk

1. On line 148 enable VMD by changing the USE VMD variable. USE VMD := 1

2. On line 151 specify the location fo the VMD installation using the VMD DIR

variable. VMD DIR := /usr/local/VMD/"VMD version number"/vmd

Install Lattice Microbes

1. Navigate to main directory of the Lattice Microbes source code.
cd LM source dir

2. Make Lattice Microbes using the settings in local.mk. As a note, difficul-
ties were encountered when using multiple threads for the build (build
option -j 8).
make LOCALMK=local.mk

3. Install the build at the INSTALL PREFIX specified in the local.mk. Root per-
missions are required because the VMD plug-in is being installed at the
location of the VMD installation, which is by default within the directory
/usr/local.
sudo make install

References

[1] Zhaleh Ghaemi, Joseph R. Peterson, Martin Gruebele, and Zaida Luthey-
Schulten. An in-silico human cell model reveals the influence of spatial
organization on rna splicing. PLOS Computational Biology, 16(3):1–23, 03
2020.

15

	Software Requirements
	List of All Dependencies
	Conda Environment - Includes Python and Python Packages
	GCC v8.4.0
	CUDA v10.1
	HDF5 v1.12.0
	Protocol Buffers v3.11.4
	PCRE v8.44
	boost v1.72.0
	SWIG v4.0.1
	SBML v5.18.0

	Configuring local.mk and editing Makefile/subdir.mk(s)
	Configuring local.mk to use installed software.
	Makefile edits
	subdir.mk edits

	Setting Up Environment
	Additions to .bashrc
	Compiler Loading
	CUDA Loading
	Library Loading
	Lattice Microbes Path Variables

	Loading Environment Variables Prior to Build
	Building and Installing Lattice Microbes
	Without VMD
	With VMD

