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Chapter 1

Introduction

This Instruction Guide contains instructions for using the Lattice Microbes Problem Solving Envi-
ronment, as described in the following publication: [1]. This guide is very much a work in progress
and will continue to be expanded. At present, it should contain enough information to get started
using the Lattice Microbes software.

1.1 pyLM Overview

pyLM is a Problem Solving Environment (PSE) for biological simulations [1]. Written in Python,
it wraps and extends Lattice Microbes. The PSE is comprised of a base set of functionality to
set up, monitor and modify simulations, as well as a set of standard post-processing routines that
interface to other Python packages, including NumPy, SciPy, H5py, iGraph to name a few.

pySTDLM

pyLM

SWIG Interface

Lattice Microbes

SBML/CMD Line

Low
er-Level

Figure 1.1: A schematic of the pyLM and the Lattice Microbes software.

The PSE is shown schematically in Figure 1.1. It sits on top of a SWIG interface that allows the
C++ code to be accessible from the Python terminal. Using pyLM allows the user to set up, run
and post-process simulations all within a single script. A general workflow is shown in Figure 1.2.
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For tutorials on using pyLM please see the “pyLM Tutorial” and for in-depth description of all
pyLM functionality please see the documentation “pyLM Documentation”.

1.2 Stochastic Modeling

Lattice Microbes can be used to simulate chemical master equations (CME):

dP (x, t)

dt
=

R∑
r

[−ar(x)P (x, t) + ar(xν − Sr)P (x− Sr, t)]

and reaction-diffusion master equations (RDME):

dP (x, t)

dt
=

V∑
ν

R∑
r

[−ar(xν)P (xν , t) + ar(xν − Sr)P (xν − Sr, t)]

+
V∑
ν

±î,ĵ,k̂∑
ξ

N∑
α

[−dαxανP (x, t) + dα(xαν+ξ + 1αν )P (x+ 1αν+ξ − 1αν , t)]

using a variety of methods.

1.3 Capabilities

pyLM and the included library of standard systems pySTDLM provide a problem solving envi-
ronment for setting up, running and analyzing stochastic biological simulations [1]. It contains
functionality for specifying simulation setup including:

• Named species

• Initial counts and distributions

• Reactions and rates

• Spatial localization and definition

• Diffusion properties

• Obstacles

• Handles to data in the popular Numpy array representation

• Plotting species averages/variances and individual time traces

• Plotting Kymographs of spatial species distributions

• Reaction network generation

• Dynamic reaction network representations
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Figure 1.2: The workflow of the pyLM PSE.
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Chapter 2

Tutorials

It is assumed that the user has at least a working knowledge of the Python programming lan-
guage including such concepts as ‘if’ statements, ‘while’ and ‘for’ loops, ‘tuples’, ‘lists’ and
‘function/method calls’. If this is not the case, we recommend the user take the Google Python
Class (https://developers.google.com/edu/python/) or work through the official
Python tutorials (http://docs.python.org/2/tutorial/), both of which are available
free of charge.

2.1 A Simple Example: Bimolecular Reaction

In the first tutorial, we will motivate stochastic modeling with a simple example of a bimolecular
reaction among three low copy number molecular species. First, we will use a traditional continu-
ous ODE approach to solving the equations using the SciPy odeint function and then use pyLM
and Lattice Microbes to simulate the same system.

We will simulate the association/dissociation reaction of hypothetical molecules:

A + B
kf−−⇀↽−−
kr

C

Writing out the differential equations will facilitate the ODE definition in SciPy:

d[A]

dt
= −kf [A][B] + kr[C]

d[B]

dt
= −kf [A][B] + kr[C]

d[C]

dt
= kf [A][B]− kr[C]

Let us start out with a low number of each particles: 1000 of A and B and 0 of C. Let us imagine
simulating that problem in a microbe sized volume of 1 fL. Also, let us start off with rates of
kf = 1.07× 105M−1s−1 and kr = 0.351/s. The Python script in Listing 2.1 will solve this using
a deterministic solver.

Listing 2.1: tut1.1-ODEBimol.py — Code used to solve the bimolecular reaction with a
continuous ODE solver.
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1 import numpy as np
2 import scipy.integrate as spi
3 import matplotlib.pyplot as plt
4
5 # Constants
6 V = 1.0e-15 # L
7 NA = 6.022e23 # molecules/mole
8 tstart = 0.0 # s
9 tend = 30.0 # s

10
11 # Rates
12 kf=1.07e5/(NA*V) # /M/s
13 kr=0.351 # /s
14
15 # Initial Species Counts
16 A = 1000
17 B = 1000
18 C = 0
19 S0 = [A, B, C]
20
21 # Definition of ODEs
22 def ds_dt(s, t):
23 Ai = s[0]
24 Bi = s[1]
25 Ci = s[2]
26 # Rate equations
27 dA_dt = -kf*Ai*Bi + kr*Ci
28 dB_dt = -kf*Ai*Bi + kr*Ci
29 dC_dt = kf*Ai*Bi - kr*Ci
30 return [dA_dt, dB_dt, dC_dt]
31
32 # Solve
33 t = np.linspace(tstart, tend, 1000000)
34 soln = spi.odeint(ds_dt, S0, t)
35
36 # Plot
37 plt.figure()
38 plt.plot(t, soln[:,0], label="A/B")
39 plt.plot(t, soln[:,2], label="C")
40 plt.xlabel(’Time (s)’)
41 plt.ylabel(’Molecule Count’)
42 plt.legend()
43 plt.savefig(’BimolecularODE.png’)

Running this code will create the plot shown in Figure 2.1a. Walking through the script, we start
out defining some constants, followed by a definition of a function that returns the rates in the
previous equations followed by a solve for 1 million different time points. Finally the results are
plotted. Of particular note is the division of the forward rate constant by Avogadro’s number and
the volume of the cell which takes us to units of molecules per second. This is the standard for
stochastic simulations and will be described shortly.

What you should note about the results are that the count of each species varies smoothly across
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the time course. However, it is reasonable to define molecules at their endpoints, either reactants
or products, which necessarily means that the count of each molecule must be a whole number.
Furthermore, this implies that the count of the molecules changes in integer units. Stochastic mod-
eling was designed to address this point.

Figure 2.1: (a) A deterministic solution to the bimolecular reaction. (b) A stochastic solution to the
bimolecular simulation.

Next, let us try doing the same simulation in Lattice Microbes. The Python script in Listing 2.1
will accomplish this. To run the simulation, you should execute the command:

python tut1.2-StochBimol.py

The simulation will take from a few seconds to perhaps a minute to complete.

The first thing to note are the new import statements. pyLM contains the main modules for set-
ting up reactions. pyLM.units contains helper functions for scaling numbers in a legible way.
pySTDLM is a library of standard functionality such as standard reaction systems, cell systems.
In addition it contains a number of pre- and post-processing functionality. The net few lines are
merely definitions of some constants. The line sim=CME.CMESimulation() creates an empty
simulation object. The next lines define the chemical species; in pyLM species are named by
python strings and must be registered with the simulation using the defineSpecies command.

The next two lines set up the reactions. In Lattice Microbes all reactions are irreversible, neces-
sitating the specification of both the forward and back reactions separately. The first and second
argument can be either a tuple of reactants or a string when only one reactant is specified. Lattice
Microbes currently supports 0th, 1st and 2nd order reactions, and reaction rates must be specified
in the “stochastic” format (see Table 2.1). In the special case of a 0th order reaction, the empty
string ’’ should be passed as the reactant. In addition, annihilation reactions can be specified by
passing the empty string ’’ as the product parameter.
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Order Form Parameters Macroscopic Units Stochastic Rate Constant (s−1)
0th ∅ →A k Ms−1 k · V ·NA

1st A→B k s−1 k

2nd A+B→C k M−1s−1 k
V ·NA

2nd (Self) 2A→B k M−1s−1 k
V ·NA

Table 2.1: Reactions available to both CME and RDME. Here, the stochastic rate constant should
be computed from the macroscopic rate constant (perhaps from experiment) using the volume of
the experiment, V , and Avogadro’s number, NA.

The following lines merely define the initial species counts. Next the simulation parameters are
specified, time steps will be written out every 30 microseconds and the total simulation will run for
30 seconds. The next line is of particular importance; the simulation must be saved to a file before
running the simulation. Finally, we call the run(...) command on the simulation object giving
it the name of the simulation file, the simulation method and the number of independent trajectories
(replicates) to run of that simulation. Finally, we use one of the post processing commands to look
plot the time course of the A and C species for replicate number 1 (replicates are indexed starting
at 1) into the file ‘BimolecularStoch.png’.

Listing 2.2: tut1.2-StochBimol.py — Code used to solve the bimolecular reaction with the
discrete/stochastic Lattice Microbes CME implementation.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from pyLM import *
4 from pyLM.units import *
5 from pySTDLM import *
6 from pySTDLM.PostProcessing import *
7
8 # Constants
9 V = 1.0e-15 # L

10 NA = 6.022e23 # molecules/mole
11 kf = 1.07e5/(NA*V) # /M/s
12 kr = 0.351 # /s
13
14 # Create our CME simulation object
15 sim=CME.CMESimulation()
16
17 # define our chemical species
18 species = [’A’, ’B’, ’C’]
19 sim.defineSpecies(species)
20
21 # Add reactions to the simulation
22 sim.addReaction(reactant=(’A’,’B’), product=’C’, rate=kf)
23 sim.addReaction(reactant=’C’, product=(’A’,’B’), rate=kr)
24
25 # Set our initial species counts
26 sim.addParticles(species=’A’, count=1000)
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27 sim.addParticles(species=’B’, count=1000)
28 sim.addParticles(species=’C’, count=0)
29
30 # Define simulation parameters: run for 10 seconds, saving data every ms
31 sim.setWriteInterval(microsecond(30))
32 sim.setSimulationTime(30)
33 sim.save(’T1.2-bimol.lm’)
34
35 # Run 1 replicates using the Gillespie solver
36 sim.run(filename=’T1.2-bimol.lm’, method="lm::cme::GillespieDSolver",

replicates=1)
37
38 # Plot the solution
39 plotTraceFromFile(filename=’T1.2-bimol.lm’, species=[’A’,’C’], replicate=1,

outfile=’BimolecularStoch.png’)

One example of the output can be seen in Figure 2.1. You might note that the behavior is quali-
tatively the same, however there appears to be considerable fluctuation, even after the system has
come to equilibrium. This is due to the stochastic nature of the process, where the reaction can
transiently fluctuate away from the equilibrium value. In addition, you may be able to tell that the
changes in particle number from one time to another are in integer increments, though this will
become considerably more obvious at lower number of particles.

To convince yourself that the system obeys the the macroscopic limit—or in other words the av-
erage over many realizations of the system trajectory will give back the continuous behavior—try
modifying the last few lines of the script with the following and rerun:

1 sim.save(’T1.3-bimol.lm’)
2
3 # Run 100 replicates using the Gillespie solver
4 sim.run(filename=’T1.3-bimol.lm’, method="lm::cme::GillespieDSolver",

replicates=100)
5
6 # Plot the solution
7 plotAvgVarFromFile(filename=’T1.3-bimol.lm’, species=[’A’,’C’], outfile=’

BimolecularAvgVar.png’)

The last command takes all of the replicates found in the simulation output, performs a time aver-
age over their species counts and computes the variance. You should see something similar to the
plot in Figure 2.2, Where the average appears to be the continuous limit but the variance is quite
large.

So now that you have a working understanding of using the CME solver in pyLM try to answer the
following:

1. How does initial particle count affect stochasticity?

2. How do the rates of reaction affect stochasticity?

3. What role does volume play in the reaction system?

4. What is the threshold where the continuous assumption of the ODE breaks down?
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Figure 2.2: Average over many independent trajectories sampling the stochastic equation.

5. What happens to the fluctuations if you have competition for one of the reactants? For
example if you had another reaction like: A −−⇀↽−− D

2.2 Seeing is Believing: lac Genetic Switch

The lac genetic switch in E. coli shows considerable stochasticity during the switch from utilizing
glucose to lactose [2] (shown in Figure 2.3). In monoclonal colonies growing in exponential phase
that use up available glucose, the time for each cell to turn “on” can vary by many minutes or
even an hour depending on the availability of lactose and the number of repressor proteins that
are present in the cell. To exacerbate this, the DNA for the gene is available in only one copy in
the cell which can be “on” or “off” depending on if a repressor is bound, and affects downstream
availability and number of mRNA and the protein. The lifecycle of the system, upon addition of
lactose (and depletion of the more favored glucose) is depicted in Figure 2.4.
For simplicity, we will consider only the two-state lac model. Even in the more limited two-state
model, several salient features were discovered including deficiencies in previous models and the
extent to which stochasticity played a role [2]. We will initially examine the system under the well
stirred assumption and then move on to a spatially resolved model.

2.2.1 Well-Stirred
The lac switch model has 23 reactions with 7 different substrates. Setting up of the simulation
is very similar to the previous example, so only the differences will be noted. Specifically, this
section is designed to show you how custom post-processing can be achieved. The code to set up
the simulation can be seen in Listing 2.3.
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Figure 2.3: A schematic of the lac switch with a simple two-state model [2] (shown in the dotted
box) and the full three-state model published subsequently [3]. In the two-state model, the repres-
sor sits on the operator region just downstream from the promoter and prevents the polymerase
from binding. However, when an active inducer (in this case an analog of lactose) is available, it
binds to the repressor inducing it to unbind and enabling the gene to produce mRNA. The mRNA
encodes for a transport protein that actively transports more inducer into the cell, which allows the
gene to be on for a longer period of time. Figure from [1].

Listing 2.3: tut2.1-lac2stateCME.py — Code to set up and execute the lac two-state
model with CME.

1 from pyLM import *
2 from pyLM.units import *
3 from pySTDLM import *
4 from pySTDLM.PostProcessing import *
5 from pySTDLM.NetworkVisualization import *
6 import math as m
7 import numpy as np
8 import matplotlib.pyplot as plt
9

10 # Create our simulation object
11 sim=CME.CMESimulation()
12
13 # Add the reactants
14 species = [’R2’,’O’,’R2O’,’IR2’,’IR2O’,’I2R2’,’I2R2O’,’mY’,’Y’,’I’,’Iex’,’YI’]
15 sim.defineSpecies(species)
16
17 scalar = 2.076e-9 # Rate conversion from experiments to stochastic
18
19 # Add the reactions
20 # Lac operon regulation
21 sim.addReaction(reactant=(’R2’,’O’), product=’R2O’,rate=2.43e6*scalar)
22 sim.addReaction((’IR2’,’O’), ’IR2O’, 1.21e6*scalar)
23 sim.addReaction((’I2R2’,’O’), ’I2R2O’, 2.43e4*scalar)
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Figure 2.4: A cycle showing five different processes that occur during the induction of the switch.
Figure from [1].

24 sim.addReaction(’R2O’, (’R2’,’O’), 6.30e-4)
25 sim.addReaction(’IR2O’, (’IR2’,’O’), 6.30e-4)
26 sim.addReaction(’I2R2O’, (’I2R2’,’O’), 3.15e-1)
27
28 # Transcription, translation, and degredation
29 sim.addReaction(’O’, (’O’,’mY’), 1.26e-1)
30 sim.addReaction(’mY’, (’mY’,’Y’), 4.44e-2)
31 sim.addReaction(’mY’, ’’, 1.11e-2)
32 sim.addReaction(’Y’, ’’, 2.10e-4)
33
34 # Inducer-repressor interactions
35 sim.addReaction((’I’,’R2’), ’IR2’, 2.27e4*scalar)
36 sim.addReaction((’I’,’IR2’), ’I2R2’, 1.14e4*scalar)
37 sim.addReaction((’I’,’R2O’), ’IR2O’, 6.67e2*scalar)
38 sim.addReaction((’I’,’IR2O’), ’I2R2O’, 3.33e2*scalar)
39 sim.addReaction(’IR2’, (’I’,’R2’), 2.00e-1)
40 sim.addReaction(’I2R2’, (’I’,’IR2’), 4.00e-1)
41 sim.addReaction(’IR2O’, (’I’,’R2O’), 1.00)
42 sim.addReaction(’I2R2O’, (’I’,’IR2O’), 2.00)
43
44 # Inducer transport
45 sim.addReaction(’Iex’, ’I’, 2.33e-3)
46 sim.addReaction(’I’, ’Iex’, 2.33e-3)
47 sim.addReaction((’Y’,’Iex’), (’YI’,’Iex’), 3.03e4*scalar)
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48 sim.addReaction(’YI’, (’Y’,’Iex’), 1.20e-1)
49 sim.addReaction(’YI’, (’Y’,’I’), 1.20e+1)
50
51 # Populate the model with particles
52 sim.addParticles(species=’R2’, count=9)
53 sim.addParticles(’O’, 1)
54 sim.addParticles(’Y’, 30)
55 sim.addParticles(’I’, 7224*4)
56 sim.addParticles(’Iex’, 7224*4)
57
58 # Set up the times
59 sim.setTimestep(ms(100))
60 sim.setWriteInterval(1)
61 sim.setSimulationTime(3600.0)
62
63 # Save the simulation state to a file
64 filename=’T2.1-lac2state.lm’
65 sim.save(filename)
66
67 plotCMEReactionNetwork(sim, filename="lacGraph.gml")
68
69 # Run the simulation for 10 hours
70 reps=100
71 sim.run(filename, "lm::cme::GillespieDSolver", reps)
72
73 # Post-processing
74 for i in range(1,reps):
75 plotTraceFromFile(filename, [’mY’,’Y’], i, "Trace.mY.Y.%d.png"%(i))
76
77 ##########################
78 # Custom Post-Processing #
79 ##########################
80 # Get out the data
81 fileHandle=openLMFile(filename)
82 times = getTimesteps(fileHandle)
83 simmY = reps*[]
84 simY = reps*[]
85 for i in range(1,reps):
86 simY.append(getSpecieTrace(fileHandle, ’Y’, i))
87 simmY.append(getSpecieTrace(fileHandle, ’mY’, i))
88
89 # Find min and max of mY and Y
90 minY = 1e9; maxY = 0; minmY = 1e9; maxmY = 0
91 for i in range(reps-1):
92 for y in simY[i]:
93 minY = min(minY, y)
94 maxY = max(maxY, y)
95 for my in simmY[i]:
96 minmY = min(minmY, my)
97 maxmY = max(maxmY, my)
98
99 # Histogram the data (the hard way)

100 hist = np.zeros(shape=(maxmY,maxY))
101 for i in range(reps-1):
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102 for j in range(len(times)):
103 hist[simmY[i][j]-1, simY[i][j]-1] += 1.0
104 # Compute logarithm of histogram value
105 histLog = np.zeros(shape=(maxmY,maxY))
106 for i in range(maxmY-1):
107 for j in range(maxY-1):
108 if hist[i,j] > 0:
109 histLog[i,j] = m.log10(hist[i,j])
110
111 # Plot ourselves a histogram
112 plt.clf()
113 plt.imshow(histLog.transpose(), interpolation=’nearest’, origin=’lower’,

aspect=’auto’)
114 plt.colorbar()
115 plt.xlabel(’mRNA Count’)
116 plt.ylabel(’LacY Count’)
117 plt.savefig(’LacYmRNAHeatmap.png’)
118
119 # Clean up after ourselves
120 closeLMFile(fileHandle)

This simulation will take a bit longer than the previous one. It is likely it will take between 5 and
30 minutes.

This time we have used a pre-processing command to plot the network of reactions. Namely, the
command plotCMEReactionNetwork(sim, filename="lacGraph.gml") will cre-
ate a graph file called ‘lacGraph.gml’ which can be opened with a program like Gephi (https:
//gephi.org) or Cytoscape (http://www.cytoscape.org), resulting in an image like
that seen in Figure 2.5. The use of these softwares is beyond the scope of this guide and we sug-
gest you see the webpages for use.

The next difference is that we use a different solver, namely the Next Reaction solver, which is
slightly less efficient than the Gillespie SSA solver used in the previous example [4]. Next, we
have a loop that plots the traces of the messenger ‘mY’ and the count of the protein ‘Y’ as a func-
tion of time. This line produces 100 files and can be commented out if uneccesary.

Finally, we have a set of code that is custom post-processing that does a cluster on the data to get
a heat map of the phase-space traversed by the messenger and protein over all the replicates. This
demonstrates four other functions that are particularly important. Generally, when your want cus-
tom post-processing you will be interacting with the file for a while, so use openLMFile(filename)
to get a handle to the file. Do not forget to call closeLMFile(handle), or your data file could
be corrupted. Next, you will almost undoubtably want the time trace so call getTimesteps(handle)
to get an array of the simulation timestep times. Finally, you can get different species time
traces using the function getSpecieTrace(handle, specie, replicateNumber).
The rest is just standard Python, NumPy and matplotlib code. A representative example can be
seen in Figure 2.6.
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Figure 2.5: A graph showing the possible interconversions of each species in the system. The nodes
are colored by initial count and the edges by the source node. Self edges are shown as loops.

When examining a representative time trace one will notice a few interesting features (Figure
2.6). Particularly, mRNA tend to be formed in bursts, which correspond to when a gene is ‘on’
(no repressor is bound). Correspondingly, there are large increases in the protein count during
these times, until the mRNA degrades. One can also map the phase space that is accessed by the
simulations. Averaging over 100 simulations over the first hour, and plotting protein (LacY) versus
mRNA, one notes that there are two major populations (Figure 2.7). This heat map was generated
with the custom post-processing code under the label “Custom Post-Processing” in Listing 2.3.

Figure 2.6: A single time trace from a single replicate showing the mRNA and Protein number over
an hour period.

So now that you have a working understanding of how to use pyLM to do more complex tasks, try
to answer a few of these questions:

1. What effect does the concentration of inducer have on the time to the cell turning ‘on’?
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Figure 2.7: The logarithm of the count of times the state (number of protein and number of mes-
senger) was traversed over the time series averaged over 100 simulations for the first hour of
simulation. Two clusters are clear in the map, one close to 0 mRNA and 50 protein and other with
about 100 protein and 10 mRNA.

2. How long would it take for a cell to become very induced (about 2000 copies of the protein)?
Hint: try only a few simulations as they become slower after a very long time as species
counts add up.

3. What would happen if the mRNA were longer lived, or if there were much larger bursts?

4. What effect would the extra looped state in the diagram above have on the switching time?

5. What would happen if protein did not degrade (dilute) on the timescale of a cell cycle?

2.2.2 Spatially Resolved
With this introduction to the lac switch, we can now move on and see how spatial inhomogeneity
can affect stochasticity in the system. This section will take you through setting up your first spa-
tially resolved simulation. Again, this was a simulation from [2]. The code to run this simulation
can be seen in Listing 2.4.

Listing 2.4: tut2.2-lac2stateRDME.py — Code to set up and execute the lac two-state
model with RDME.

1 from pyLM import *
2 from pyLM.units import *
3 from pySTDLM import *
4 from pySTDLM.PostProcessing import *
5 from pySTDLM.StandardReactionSystems import *
6 from pySTDLM.StandardCells import *
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7
8 # Create our simulation object
9 latticeSpacing=nm(16)

10 sim=RDME.RDMESimulation(dimensions=micron(1.024,1.024,2.048), \
11 spacing=latticeSpacing)
12
13 # Set up cell geometry
14 sim.buildCapsidCell(length=micron(1.8), diameter=micron(0.5), \
15 membraneThickness=nm(32))
16
17 # Add the reactants and reactions
18 addLacTwoStateSystem(sim)
19
20 # Get handles to the different regions
21 mem=’membrane’
22 cyt=’cytoplasm’
23 ext=’default’
24
25 # Crowd the cytoplasm
26 packFastGrowingEcoli(sim)
27
28 # Populate the model with particles
29 sim.addParticles(species=’R2’, region=cyt, count=9)
30 sim.addParticles(’O’, cyt, 1)
31 sim.addParticles(’Y’, mem, 30)
32 sim.addParticles(’I’, cyt, 7224*2)
33 sim.addParticles(’Iex’, ext, 7224*2)
34
35 # Set up the times
36 sim.setTimestep(microsecond(50))
37 sim.setWriteInterval(1)
38 sim.setLatticeWriteInterval(1)
39 sim.setSimulationTime(7200)
40
41 # Save the simulation state to a file
42 filename=’T2.2-lac2state.lm’
43 sim.save(filename)
44 # Run the simulation for 10 hours
45 reps=10
46 sim.run(filename, "lm::rdme::MpdRdmeSolver", reps)
47
48 # Post-processing
49 for i in range(1,reps+1):
50 print("plotting")
51 plotTraceFromFile(filename, [’mY’,’Y’], i, "Trace.mY.Y.%d.png"%(i))

The Python script will set up a cell with realistic crowding, internal and external inducer. First off,
spatial simulations require a lattice spacing to be defined. This spacing is the side length for the
volume that is assumed to be “homogeneously” stirred (which allows CME to be applied in each
subvolume). While this number can be too large, or two small and the CME assumption breaks
down, the discussion of this is beyond the scope of this tutorial. Eight, 16 and 32 nanometers are
all fairly common lattice spacings. Se then define the overall volume of the simulation. In this
case, we have created a cuboid shaped region with an aspect ratio of 2:1 (Lattice Microbes only
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supports cuboid shaped simulations).

At this point, let us take a look at the anatomy of an RDME simulation. A schematic of one is
shown in Figure 2.8. As we have already described subvolumes and the overall simulation do-
main, there are only a few things to note. In Lattice Microbes, particles live in a subvolume, and
the actual location within the subvolume is not known, but we can think of a particle as living in
the center for simplicity. What happens as time advances in the simulation is that particles within a
subvolume can react, either by themselves or with other particles, or they can diffuse to one of the
27 (or fewer) direct neighboring subvolumes. At the current state, Lattice Microbes can support 8
different particles at a given site, with a total of 256 possible species/particle types. Therefore the
maximum occupancy of the total simulation domain is 8 × subvolumes. In practice, due to the
algorithm, you will want to keep this number below 10% of the total allowable occupancy.

Within the overall simulation domain there is a notion of regions. Regions are associated with
a particular ‘site type’. These could be things like a membrane or the cytoplasm, or something
completely not biologically related. All the subvolumes assigned a site type that defines what can
happen in that volume. Regions are defined with possible chemical reactions that can occur in
them, as well as what type of particles can diffuse into and out of them, as well as the diffusion
rate into/out of and between these sites. For instance, one protein might diffuse onto a membrane
and have a lower diffusion rate on the membrane than in the cytosol. Or a particular reaction may
only occur in the cytosol. Therefore, regions allow us to define what particles can do.

However, regions need not be contiguous space. As shown in the figure, there are two areas in
the simulation that are the red region, and one that is the purple. Therefore, all the reactions that
can occur in one of the red region can also occur in the other even though they are not connected
spatially. This concludes our brief aside on the anatomy of an RDME simulation.

1 Subvolume

Simulation Domain

X

Z

Y

{Lattice 
Spacing

A Region

Another
 Region

Figure 2.8: A schematic of a hypothetical RDME simulation.
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From an analysis of the previous code, it can be seen that one DNA particle ‘O’ is placed (in this
case randomly in the volume) along with a number of lac proteins ‘Y’ that end up randomly on
the membrane, nine repressor dimers ‘R2’ and quite a few internal and external inducer molecules.
Simulation parameters are specified and the simulation then runs for 10 minutes. On a single GPU,
this simulation takes about 32 hours to run, so you may want to get a coffee while it runs. Alter-
natively, we have included a copy of the simulation results in the tutorial files and you can run the
script with the sim.run(filename...) line commented out, and all the other code will work
perfectly. A similar figure to that plotted in the previous section is created with the same plotting
command.

Perhaps more interesting, however, than this process is the visualization. If you installed Lattice
Microbes and the plugin for VMD, you will be able to open spatially resolved simulations. To
start, open up VMD, then load the file into the dialog box. The result should look something like
that seen in Figure 2.9; if “Lattice Microbes” is not the file type, then the plugin is not installed
correctly—please see the Lattice Microbes User Guide. At first, the simulation will look rather
boring, like that in Figure 2.10. The spherocylinder was drawn to show the shape of the cell, and
several other shapes can be drawn, including cubes, spheres, etc. Delete this by going to the “Tk
Console” in the “Extensions” menu and entering the command graphics top delete all
to reveal just the particles.

Figure 2.9: An example of the open dialog box in VMD.

Next, we should pretty the simulation up some, as every particle is loaded the same color. Open the
“Graphical Representations” tool from the “Grpahics” menu and create representations similar to
what you seen in Figure 2.11a. In VMD each particle is known by a ‘type’ which correspond to the
order you registered species with the simulation via the defineSpecies() function in pyLM
starting with 0 as the first index. You will probably have to play with the “Sphere Scale” to see
all the particles. In this case, van Der Waals (“VDW”) representation was used, but the “Points”
representation is equally useful.

This should result in a view similar to what you seen in Figure 2.11b. From here you can use the
slider in the “VMD Main” window to play through the frames of the movie. Play around to see
what else you can do.
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Figure 2.10: A Lattice Microbes simulation initially loaded.

Now, often you will want to make sure the simulation is set up correctly by checking the site loca-
tions. VMD does not automatically load these, but it can be configured to load them. Close VMD
and reopen the program. Before loading the simulation file, run from the console the following
commands:

set env(LM_CREATE_OBSTACLE_ATOMS) 1
set env(LM_CREATE_SITE_ATOMS) 1

Site types are named “site” in VMD and can be selected similar to the way shown in Figure 2.12.
The figure also demonstrates how to cut through the simulation using the selection “x < 51000”.
In VMD the natural units are in angstroms, so the simulation is about 10240 angstroms in x and y
and 20480 in z.

One particular note of interest is that VMD automatically loads the first replicate, if more than
one replicates were run. In order to load a different replicate, you must follow the procedure for
showing obstacle and site types just mentioned but with the Tk Console command:

set env(LM_REPLICATE) #

Where the # symbol is the replicate number. Lattice Microbes files are standard HDF5 files, mean-
ing they can be opened with HDFView (which is available from http://www.hdfgroup.
org/HDF5/) and other features of the simulation can be inspected such as data layout, param-
eters, etc. However, this is an advanced topic and beyond the scope of these tutorials. The user
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Figure 2.11: a) Graphics Representation window showing what one such particle representation
might look like. b) A view showing external inducer (red), internal inducer (gray), lac permease
protein (blue), lac repressor (cyan) and the DNA particle (green).

is, however, encouraged to explore the file if they are curious. Note: Do not open a Lattice
Microbes file while the simulation is running! In rare cases this can cause the data to be cor-
rupted. If you must, we recommend you make a copy of the simulation file and open the copy.

This concludes our brief introduction to spatially resolved simulations in Lattice Microbes. Much
additional functionality for setting up RDME simulations exists and can be found in the Lattice
Microbes Reference Guide for pyLM available at the website.

2.3 Debugging and Command Line Execution

At this point, it is appropriate to address two topics that will no doubt be required if you use Lattice
Microbes to solve anything but a toy problem. This section describes the process for debugging
simulations as well as how to invoke Lattice Microbes simulations from the command line, which
is useful when running on supercomputers.

2.3.1 Debugging
Sometimes a simulation will not work on the first try. Python sometimes has the downfall of being
too kind to errors, and we as programmers are sloppy. As such, it may fail without a word and
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Figure 2.12: a) An example of a graphic representation of the site types. b) Here the extracellular
(also called default) is shown in gray, the membrane, which is about 2 sites thick, is shown in blue
and the cytoplasm is shown in red. Both the extracellular and the membrane are cut only show
those with x less than 5100 angstroms.

not perform the actions you requested. Therefore, you will want to be able to debug what is going
on in pyLM as it performs its task. It provides this capability through a Python “logger” which
can be activated in the script. We recommend you always activate this functionality when you are
designing a simulation and then deactivate it when running production runs. To enable the logging,
merely add the following code to your simulation:

Listing 2.5: Code to enable debugging output in pyLM.

1 from pyLM import LMLogger
2 LMLogger.setLMLogConsole(logging.WARNING)

Five levels of debugging information are available; listed in order of increased output: logging.DEBUG,
logging.INFO, logging.WARNING, logging.ERROR, logging.CRITICAL. Different
levels are used throughout pyLM and pySTDLM to inform the user what is going on, as well as
any other errors or warning that might have occurred. As an example we have included a test file
with an error in Listing 2.6. Try running the code with the various different levels to try to identify
the error.

Listing 2.6: tut2.3-debugging.py — Code with an error.
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1 import numpy as np
2 import matplotlib.pyplot as plt
3 from pyLM import *
4 from pyLM.units import *
5 from pySTDLM import *
6 from pySTDLM.PostProcessing import *
7
8 # Turn on logger
9 from pyLM import LMLogger

10 LMLogger.setLMLogConsole(logging.WARNING)
11
12 # Constants
13 V = 1.0e-15 # L
14 NA = 6.022e23 # molecules/mole
15 kf = 1.07e5/(NA*V) # /M/s
16 kr = 0.351 # /s
17
18 # Create our CME simulation object
19 sim=CME.CMESimulation()
20
21 # define our chemical species
22 species = [’A’, ’B’, ’C’]
23 sim.defineSpecies(species)
24
25 # Add reactions to the simulation
26 sim.addReaction(reactant=(’A’,’B’), product=’C’, rate=kf)
27 sim.addReaction(reactant=’C’, product=(’A’,’B’), rate=kr)
28
29 # Set our initial species counts
30 sim.addParticles(species=’a’, count=1000)
31 sim.addParticles(species=’B’, count=1000)
32 sim.addParticles(species=’C’, count=0)
33
34 # Define simulation parameters: run for 10 seconds, saving data every ms
35 sim.setWriteInterval(microsecond(30))
36 sim.setSimulationTime(30)
37 sim.save(’T2.3-bimol.lm’)
38
39 # Run 1 replicates using the Gillespie solver
40 sim.run(filename=’T2.3-bimol.lm’, method="lm::cme::GillespieDSolver",

replicates=1)
41
42 # Plot the solution
43 plotTraceFromFile(filename=’T2.3-bimol.lm’, species=[’A’,’C’], replicate=1,

outfile=’BimolecularStoch.png’)

In addition, you may want to add your own debugging to the output. As such you can simply add
lines such as:

Listing 2.7: Custom debugging output.

1 LMLogger.error("This is an error: %d"%var)
2 LMLogger.info("General info for me...")
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3 LMLogger.warning("Are you sure you want to do this: %s"%"Something dangerous")

2.3.2 Command Line
While launching the simulations from within a Python script is what you will want to do during
testing, it may not be the best way to launch the code for a production run. For example, some
clusters and supercomputers do not have the correct Python environment, or allow interpreted lan-
guages to be run as the primary executable. Therefore, you may want to launch your job from the
command line using the lm executable. Luckily, you can prototype your simulation in Python as
discussed before, then comment out the sim.save(...) and sim.run(...) commands,
run the simulations on a supercomputer, then run the Python script on the already produced output,
to leverage the power of scripting for custom post-processing.

Running Lattice Microbes from the command line can be fairly straightforward. For example,
running the simulation in Listing 2.4 one would execute the following command:

lm -r 0-2 -sp -sl lm::rdme::MpdRdmeSolver -f T2.2-lac2state.lm

To dissect the command, the -r 0-2 indicates to run three replicates with indices 0, 1 and 2, -sp
indicates the simulation is spatially resolved (i.e. RDME), -sl lm::rime::MpdRdmeSolver
is the particular solver to use to sample the stochastic equations and -f T2.2-lac2state.lm
indicates the file that should be used.

On a supercomputer or cluster where multiple CPU’s and/or multiple GPU’s are to be used, you
may need to specify additional arguments. For example, on a system with 2 GPU’s per node, and
8 CPU cores, you could split up 16 replicates as such:

mpirun -np 8 lm -r 0-15 -sp -sl lm::rdme::MpdRdmeSolver -gr 1/16 \
-cr 1/2 -f T2.2-lac2state.lm

which will dedicate one sixteenth of a GPU and a half of a CPU core to each replicate. Alterna-
tively, the simulations will be run in two sets if you only run:

mpirun -np 8 lm -r 0-15 -sp -sl lm::rdme::MpdRdmeSolver -gr 1/8 \
-cr 1 -f T2.2-lac2state.lm

However, it should be noted that usually on large supercomputers or for complex jobs you may
want a dedicated CPU for the data input/output thread. This thread is launched by default per
simulation, so you could subtract that number from your total CPU cores.
To get a complete listing of the commands run lm -h which should give a prompt similar to:

Usage: lm (-h|--help)
Usage: lm (-v|--version)
Usage: lm [OPTIONS] (-l|--list-devices)
Usage: lm [OPTIONS]
Usage: lm [OPTIONS] (-s|--script) script_filename [(-sa|--script-args) script_arguments+]
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Usage: lm [OPTIONS] [SIM_OPTIONS] (-f|--file) simulation_filename

OPTIONS
-c num_cpus --cpu=num_cpus
The number of CPUs on which to execute (default all).
-cr num --cpus-per-replicate=num
The number of CPUs (possibly fractional) to assign per replicate, e.g. "2", "1/4" (default 1).
-g cuda_devices --gpu=cuda_devices
A list of cuda devices on which to execute, e.g. "0-3", "0,2" (default 0).
-gr num --gpus-per-replicate=num
The number of cuda devices (possibly fractional) to assign per replicate, e.g. "2", "1/4" (default 1).
-nc --no-capabilities
Don’t print the capabilities of the CUDA devices.
-nr --no-reserve-core
Don’t reserve a CPU core for the output thread.

SIM_OPTIONS
-r replicates --replicates=replicates
A list of replicates to run, e.g. "0-9", "0,11,21" (default 0).
-sp --spatially-resolved
The simulations should use the spatially resolved reaction model (default).
-ws --well-stirred
The simulations should use the well-stirred reaction model.
-sl solver --solver=solver
The specific solver class to use for the simulations.
-ck --checkpoint=interval
Enable checkpointing with the given interval as hh:mm:ss (default 00:00:00 -- disabled).

2.4 Advanced Post-Processing: The Min System

In this section, we will use another popular stochastic simulation to demonstrate more advanced
post-processing using Python. In particular, we will use the Min protein system [5, 6], shown
schematically in Figure 2.13, that places the division plane in the center of the cell during division
of E. coli. As the system evolves from the initial state, an oscillation of the two proteins from one
pole of the cell to the other at a frequency close to 1 per minute, with the MinE protein stimulating
the detachment of the membrane bound MinD protein activating its ATPase activity. One partic-
ular interesting fact is that certain mutants of E. coli show anomalous Min system behavior that
cannot be captured with deterministic PDE simulations and require the use of stochastic simulation
techniques like the RDME.
Again, the simulation setup is fairly easy, and this Min system is available as a standard reaction
system in pySTDLM. The code to setup up, run and analyze the simulation is shown in Listing 2.9.
Everything before post-processing is similar to that in Section 2.2.2 so will not be discussed.

Listing 2.8: tut3.1-minsystem.py — Code to set up and execute the Min protein system
with RDME.

1 from pyLM import *
2 from pyLM.units import *
3 from pySTDLM.PostProcessing import *
4 from pySTDLM.NetworkVisualization import *
5 import math as m
6 import numpy as np
7 import matplotlib.pyplot as plt
8
9
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Figure 2.13: A schematic of the Min protein system model [1]. ATP bound MinD attaches to the
membrane and can long fields of bound MinD. MinE binds to membrane bound MinE stimulat-
ing its ATPase activity and causing the MinD to leave the membrane where, once back in the
cytoplasm, another ATP can replace the bound ADP.

10 # Create our simulation object
11 sim=RDME.RDMESimulation(dimensions=micron(1.024,1.024,4.096), spacing=nm(32))
12
13 # Build a capsid cell
14 sim.buildCapsidCell(length=micron(4), diameter=micron(1), \
15 membraneThickness=nm(64))
16
17 # define our chemical species
18 sim.defineSpecies([’minDadp’, ’minDatp’, ’minDm’, ’minE’, ’minDEm’])
19
20 # Modify the cytoplasm to add diffusion rates and reactions
21 sim.modifyRegion(’cytoplasm’) \
22 .setDefaultDiffusionRate(2.5e-12) \
23 .addReaction(reactant=’minDadp’, product=’minDatp’, rate=0.5)
24
25 # Modify the membrane to add reactions
26 V=3.14*4.0e-6*0.5e-6*0.5e-6*1000.0 # Liters
27 N_A=6.022e23 # molecules/mole
28 scalar=1.0/(N_A*V)
29
30 sim.modifyRegion(’membrane’) \
31 .setDefaultDiffusionRate(2.5e-12) \
32 .setDiffusionRate(species=’minDm’, rate=1e-14) \
33 .setDiffusionRate(species=’minDEm’, rate=1e-14) \
34 .addReaction( ’minDatp’, ’minDm’, rate=0.78) \
35 .addReaction((’minDatp’,’minDm’), (’minDm’,’minDm’),rate=9e6*scalar) \
36 .addReaction((’minDm’,’minE’), ’minDEm’, rate=5.56e7*scalar) \
37 .addReaction( ’minDEm’, (’minE’,’minDadp’),rate=0.7)
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38
39 # Set diffusive properties between regions
40 sim.setTransitionRate(species=’minDatp’, via=’cytoplasm’, \
41 to=’membrane’, rate=2.5e-12)
42 sim.setTransitionRate(species=’minDadp’, via=’cytoplasm’, \
43 to=’membrane’, rate=2.5e-12)
44 sim.setTransitionRate(species=’minE’, via=’cytoplasm’, \
45 to=’membrane’, rate=2.5e-12)
46 sim.setTransitionRate(species=’minDatp’, to=’cytoplasm’, \
47 via=’membrane’, rate=2.5e-12)
48 sim.setTransitionRate(species=’minDadp’, to=’cytoplasm’, \
49 via=’membrane’, rate=2.5e-12)
50 sim.setTransitionRate(species=’minE’, to=’cytoplasm’, \
51 via=’membrane’, rate=2.5e-12)
52
53 # Populate the model with particles
54 sim.addParticles(species=’minDatp’, region=’cytoplasm’, count=1758)
55 sim.addParticles(species=’minDadp’, region=’cytoplasm’, count=1758)
56 sim.addParticles(species=’minE’, region=’cytoplasm’, count=914)
57
58 # Set simulation Parameters
59 sim.setTimestep(microsecond(50))
60 sim.setWriteInterval(0.5)
61 sim.setLatticeWriteInterval(0.5)
62 sim.setSimulationTime(600)
63
64 # Run simulation
65 filename="T3.1-MinSystem.v3.lm"
66 sim.save(filename)
67 sim.run(filename, method=’lm::rdme::MpdRdmeSolver’, replicates=1)
68
69
70 ###################
71 # Post-Processing #
72 ###################
73 # Plot Kymogrpahs for MinE and MinD
74 plotOccupancyKymograph(filename, species=’minDm’, \
75 filename=’MinDmKymo.png’)
76 plotOccupancyKymograph(filename, species=’minE’, \
77 filename=’MinEKymo.png’)
78
79 # Calculate the Oscillation Frequency

The next two commands plot a kymograph of the occupancy of that (x,y) coordinate of the z slice
as a function of time. Currently, only slices in z are supported, but this will be expanded in a
future release of pyLM. The occupancy is computed as the number of sites that contain a particular
particle divided by the total number of sites in that slice. The kymograph for membrane bound
MinD can be seen in Figure 2.15.
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Figure 2.14: Three times during the simulation showing membrane bound MinD (cyan) oscillating
from pole to pole with MinE (red) trailing behind the wavefront.
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Figure 2.15: End to end oscillations of the membrane bound MinD as the system progresses in time.

2.5 Advanced Uses: Merging RDME with CME

This section will show you how to use a feature of pyLM that allows custom control of the sim-
ulation states the simulation progresses. In order to run the examples in this section your HDF5
library needs to have been compiled with the --enable-threadsafe option. If the example
exhibits random crashing, you will likely have to recompile your HDF5 library. In this section we
will create a subclass of the MPD RDME Solver class that will perform custom operations during
at a specified time interval (in this case, every time the simulation state is written to file).

This simulation mocks the production of a protein from its gene and the resulting consumption of
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Figure 2.16: A schematic of the combined RDME/CME simulation.

a substrate by that enzyme (see Figure 2.16). To reduce the computational cost of carrying around
many substrate and product molecules in the RDME lattice, they are treated as well stirred (i.e. the
molecules are much smaller than the enzymes). However, the translational machinery interactions
are spatially resolved. Finally, the products from the enzyme reaction are inserted into the RDME
simulation domain as they are created, so that they could potentially interact with the DNA to cre-
ate some sort of feedback (however, this case is not explicitly treated in this tutorial).

The point of the tutorial is to highlight the extendability of the RDME solver in pyLM. Right after
turning on the logging, a new class is defined called “MyOwnSolver” that extends the MPD RDME
Solver. A few of the internal variables are then created including initial timestep, species and time
trace arrays. The meat of the solver is in the function hookSimulation(...) which is a time-
based interrupt to the Lattice Microbes simulation. Essentially, this function is called every time
a lattice is written (the same frequency as that set in setLatticeWriteInterval(...)).
The RDME simulation pauses, passes the current time and lattice to this function and pretty
much any Python code can be executed.

Listing 2.9: tut3.2-rdmecme.py — Code that shows how an RDME and CME simulation
can be coupled using a time-based interrupt.

1 import os
2 import random
3 import time as tm
4 from pyLM import CME
5 from pyLM import RDME
6 from pyLM import LMLogger
7 from pyLM.units import *
8 import pySTDLM.PostProcessing as pp
9 import numpy as np

10
11 # Turn on Logging
12 import logging
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13 LMLogger.setLMLogConsole(logging.INFO)
14 lmlog=LMLogger.LMLogger
15
16 ### Define our own solver class derived from MpdHybridSolver
17 class MyOwnSolver(lm.MpdHybridSolver):
18 # Timestep Variables
19 tsnum=0
20 curt=0.0
21 delt=ms(250.0)
22
23 # Species Variables
24 numS=10000
25 numE=0
26 numES=0
27 numP=0
28
29 # Time Traces
30 times=[]
31 traceS=[]
32 traceE=[]
33 traceES=[]
34 traceP=[]
35
36 # The hookSimulation method defined here will be called at every frame
37 # write time. The return value is either 0 or 1, which will indicate
38 # if we changed the state or not and need the lattice to be copied

back
39 # to the GPU before continuing. If you do not return 1, your changes
40 # will not be reflected.
41 def hookSimulation(self, time, lattice):
42 print("")
43 print("")
44 lmlog.info("Hook at time: %f sec"%time)
45 lmlog.info("Creating CME simulation...")
46 curtime=time
47 # Create simulation
48 csim=CME.CMESimulation()
49 csim.defineSpecies([’E’,’S’,’ES’,’P’])
50
51 # Count enzymes in cell
52 parts=lattice.findParticles(4,4)
53 Erdme=len(parts)
54
55 # Add reactions and particles
56 k1=0.001 # molecules/s
57 k2=0.1 # /s
58 k3=0.2 # /s
59 csim.addReaction((’E’,’S’),’ES’, k1)
60 csim.addReaction(’ES’,(’E’,’S’), k2)
61 csim.addReaction(’ES’,(’E’,’P’), k3)
62
63 csim.addParticles(’E’, int(Erdme-self.numES))
64 csim.addParticles(’ES’, int(self.numES))
65 csim.addParticles(’P’, int(self.numP))
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66 csim.addParticles(’S’, int(self.numS))
67
68 # Set time data
69 csim.setWriteInterval(ms(1))
70 csim.setSimulationTime(self.delt)
71
72 # Save and run simulation
73 filename=’cmeSim.%d.lm’%self.tsnum
74 lmlog.info("Saving %s..."%filename)
75 tm.sleep(1)
76 csim.save(filename)
77 lmlog.info("Running CME simulation...")
78 os.system("lm -r 0-1 -ws -sl lm::cme::GillespieDSolver -f %s"%

filename)
79 tm.sleep(1)
80 self.tsnum += 1
81
82 # Read CME state
83 lmlog.info("Postprocessing...")
84 fHandle=pp.openLMFile(filename)
85 S =pp.getSpecieTrace(fHandle, ’S’)
86 endidx=len(S)-1
87 E =pp.getSpecieTrace(fHandle, ’E’)
88 ES=pp.getSpecieTrace(fHandle, ’ES’)
89 P =pp.getSpecieTrace(fHandle, ’P’)
90
91 ts = pp.getTimesteps(fHandle)
92 tsShifted=[]
93 for i in range(len(ts)):
94 tsShifted.append(ts[i]+self.curt)
95 self.curt = curtime
96 self.times.extend(tsShifted)
97 pp.closeLMFile(fHandle)
98
99 # Add product to the RDME simulation

100 for i in range(P[endidx]-self.numP):
101 while True:
102 x=random.randint(0,lattice.getXSize()-1)
103 y=random.randint(0,lattice.getYSize()-1)
104 z=random.randint(0,lattice.getZSize()-1)
105
106 if lattice.getOccupancy(x,y,z) < 7:
107 # Add a product particle
108 lattice.addParticle(x,y,z,5)
109 break
110
111 # Update Solver internals
112 lmlog.info("Updating internals...")
113 self.numS=S[endidx]
114 self.numE=E[endidx]
115 self.numES=ES[endidx]
116 self.numP=P[endidx]
117 self.traceS.extend(S)
118 self.traceE.extend(E)
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119 self.traceES.extend(ES)
120 self.traceP.extend(P)
121
122 lmlog.info("Resuming RDME simulation...")
123 return 1
124
125 def saveTraces(self):
126 allTraces=[self.times, self.traceE, self.traceS, self.traceES,

self.traceP]
127 np.savetxt(’T3.2-CMETraces.dat’, np.transpose(allTraces))
128
129 def plotTraces(self):
130 plotStr="gnuplot plotter.gp"
131 os.system(plotStr)
132 # End of MyOwnSolver class. That’s it!
133
134
135
136 # Create our simulation object
137 latticeSpacing = 32 #nm
138 sim=RDME.RDMESimulation(dimensions=micron(1.024,1.024,1.024), spacing=nm(

latticeSpacing))
139
140 # define our chemical species
141 species = [’DNA’, ’Polymerase’, ’RNA’, ’Enzyme’, ’Product’]
142 sim.defineSpecies(species)
143
144 # Modify the cytoplasm to add diffusion rates and reactions
145 reg=sim.modifyRegion(’default’)
146 reg.setDefaultDiffusionRate(2.5e-12)
147 reg.setDiffusionRate(’DNA’, 0.0)
148 # 480 nt long with rate of 70 nt/sec
149 reg.addReaction(reactant=(’DNA’, ’Polymerase’), product=(’DNA’, ’Polymerase’,

’RNA’), rate=0.5e-3)
150 # Protein length ˜ 160 aa with rate of 40 aa/sec
151 reg.addReaction(’RNA’, (’RNA’,’Enzyme’), 0.25)
152 # RNA lifetime of 2 minutes
153 reg.addReaction(’RNA’,’’, 1.0/120.0)
154 # Enzyme is around for about 1/3 the cell cycle
155 reg.addReaction(’Enzyme’,’’, 1.0/1200.0)
156
157 # Add particles
158 sim.addParticles(species=’DNA’, region=’default’, count=1)
159 sim.addParticles(’Polymerase’, ’default’, 460)
160
161 # Set simulation Parameters
162 sim.setTimestep(microsecond(50))
163 sim.setWriteInterval(ms(250))
164 sim.setLatticeWriteInterval(ms(250))
165 sim.setSimulationTime(60)
166
167 rdmeFilename="T3.2-mixedRDMECME.lm"
168 sim.save(rdmeFilename)
169
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170 # Create an instance of our local solver
171 solver=MyOwnSolver()
172 # Call the ’runSolver’ method with the supplied solver
173 # then perform the post-processing
174 sim.runSolver(rdmeFilename, solver=solver)
175
176 # Post-process the data
177 solver.saveTraces()
178 rHandle=pp.openLMFile(rdmeFilename)
179 times=pp.getTimesteps(rHandle)
180 R=pp.getSpecieTrace(rHandle,’RNA’)
181 E=pp.getSpecieTrace(rHandle,’Enzyme’)
182 P=pp.getSpecieTrace(rHandle,’Product’)
183 rdmeTraces=[times,R,E,P]
184 np.savetxt(’T3.2-RDMETraces.dat’,np.transpose(rdmeTraces))
185 solver.plotTraces()
186 pp.closeLMFile(rHandle)

So after simulating for a quarter of a second, the function is called and a new CME simulation
for the enzyme catalysis is created. As an input, it uses the current number of enzyme particles
in the CME (which it determines by the function call findParticle(low,high), where the
low and high are indices into the defined species list). The CME simulation rates and reactions
are set and it is run using a system call os.system(...) using another instance of Lattice
Microbes. Currently, the runSolver(...) command cannot be used here as it conflicts with
some threads, however this will be rectified in a later version. Finally, when the CME simulation
is completed, it reads the number of new product particles, adds them to the RDME simulation
in random places using the addParticle call. Finally, it copies the CME simulation particle
traces to internal variables of the “MyOwnSolver” class for use later.

The rest of the code is fairly boiler plate setting up an RDME simulation and running it. In this
case we assume RNA is transcribed at about 70 nucleotides per second and protein is produced at
about 40 amino acids per second. We assume a protein of about 160 amino acids length, and pick
some numbers for different rates. Finally around line 170 some post processing occurs to plot out
several traces using a system call to use Gnuplot.

The results of the simulation can be seen in Figures 2.17 and 2.18. While the results are relatively
uninteresting, the code demonstrates how one would merge different types of kinetic methods. For
example, the CME could be replaced by a standard set of continuous ordinary-differential equa-
tions, or by a steady state method like flux-balance analysis (as was done recently [7, Chapter 13]).
Alternatively, one could implement a feedback system where the product particles caused the gene
to be turned off with a certain probability. We encourage you to think outside the box and push our
software to its limits.

This concludes our basic tutorials. While we only covered a fraction of the possible functionality
available in Lattice Microbes/pyLM, we think this is enough to enable you to begin using it. Full
documentation is available on the Lattice Microbes website.

If you are interested in giving feedback or suggestions, please email the developers. In addition,
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Figure 2.17: A schematic of the combined RDME/CME simulation performed in this section where
transcription/translation are spatially resolved and enzyme catalysis is assumed to be a well-stirred
process.

Figure 2.18: Three times during the simulation showing DNA (green), RNA (red), protein (brown)
and product molecules added to the simulation (pink).

we look forward to contributions from the community. Furthermore, if you publish any results
based on simulations from Lattice Microbes, we ask that you notify us by sending a citation to
your paper so that we can follow what work is being done with the code.
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Chapter 3

Examples

Many examples demonstrating features of pyLM exist both on the website (http://www.scs.
illinois.edu/schulten/lm/download/lm22/ExampleFiles.tgz) and in the source
code (src/python/Examples). Each demonstrates several different features of pyLM, and it
is suggested that you read and work through all of the examples before starting to use pyLM for
your project. It is recommended that you work through the problems in the order shown, as func-
tionality documented in an earlier file is not described again in later files.
Various functionality is demonstrated in the examples, including:

• CME

1. example-bimol.py – Demonstrates process of defining molecular species, reactions and
initial conditions in a CME simulation

2. example-bimolConc.py – Same as example-bimol.py using concentrations instead of
particle numbers

3. example-bimol-pp.py – Demonstrates the general trends for writing post-processing
code for a CME simulation

4. example-rnaprotein.py – An example of constitutive gene expression

5. example-LotkaVolterra.py – An example of the well known Lotka-Volterra problem
(predator-prey) simulated with stochasticity

6. example-stochasticResonator.py – An example of a stochastic resonator problem with
CME

7. example-lac2state.py – This file demonstrates a more complex reaction scheme

• RDME

1. example-MichaelisMenten.py – This demonstrates how to define a simulation domain
in a 3D RDME simulation and defines an enzyme/substrate reaction system to be sim-
ulated in the domain

2. example-minde.py – A demonstration of the popular Min system of E. coli showing
how to construct default cell shapes, customize diffusion coefficients in regions and
diffusion coefficients between regions
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3. example-restart.py – This demonstrates how to restart an RDME simulation, however
it is a hack as of now

• Advanced Setup

1. example-shapes.py – An example showing how to define complex objects such as
boxes, spheres, tori, ellipses and intersections, unions and differences of the various
objects

2. example-tightPackedCellArray.py – This example shows a pySTDLM feature that packs
a cell shape into a tight regular grid spanning the whole RDME domain

3. example-extendrdme.py – This example shows how to extend the basic RDME solver
with a hook that is run on every lattice write, allowing the user to modify the simulation
based on the simulation state
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Chapter 4

License and Copyright

University of Illinois Open Source License
Copyright c© 2008-2013 Luthey-Schulten Group, All rights reserved.

Permission is hereby granted, free of charge, to any person obtaining a copy of this software
and associated documentation files (the Software), to deal with the Software without restriction,
including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense,
and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

• Redistributions of source code must retain the above copyright notice, this list of conditions
and the following disclaimers.

• Redistributions in binary form must reproduce the above copyright notice, this list of con-
ditions and the following disclaimers in the documentation and/or other materials provided
with the distribution.

• Neither the names of the Luthey-Schulten Group, University of Illinois at Urbana-Champaign,
nor the names of its contributors may be used to endorse or promote products derived from
this Software without specific prior written permission.

THE SOFTWARE IS PROVIDED ”AS IS”, WITHOUT WARRANTY OF ANY KIND, EX-
PRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MER-
CHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE
FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE SOFTWARE.
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